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AERONAUTICAL SYMBOLS.

1. FUNDAMENTAL AND DERIVED UNITS,

Metric. Tonglish.
Symbol. —
Unit. Symbol. Ulit. Symbol.
Length... { 13 TG11) S m, foot (or mile)........... ft. (or mi.).
Time..... ¢ 8eCONd. e i cranannnan. sec. eecond (orbour). ...... sce. (or hr.),
Force....| - F weight of ono kilogram...... kg. weight of one pound....| Ib.
Power. .. P 9148 0 (/1Y P hoTsePOWe e iviannnnn.- 1P -
Speed....ooveeeni myseCa oo m.p.s. | mMihleieieiiiiinnnnann. M. P. 11
: 2. GENERAL SYMBOLS, ETC.
Weight, W=my. . Specific weight of “standard " air, 1.223 kg/m.}
Standard acceleration of gravity, . =0.07635 Ib/ft>
g=9.806m/sec.? =32.17(t/sec.? ~ Moment of incrtia, mZ* (indicale axis of the
v ius of gyratien roner subscript),
Mass, m=l radius of gyration, k, by proner subscript)
q Area, §; wing area, S, cte.
Density (mass per unit volume), p Gap, G '

tandard density of dry air, 0.1217 (kg.-m.- Span, &; chord lenzth, c.

see.) at 15.6°C. and 760 mm. =0.00237 {lb.- Aspeect ratio=d/c

ft.-scc.) Distance from c. g. to clevator hinge, f.
Coeflicient of \'iscosity;\p,a

3. AERODYNAMICAL SYMBOLS.

True airspeed, V Dihedral angle, ¥
Dynamic (or impact) pressure, q=é pl? ey nolds Numbcr-:pI:—Z, where 1 is « linear di-
. . L mension.
Lift, L; absolute cocflicient 0"=}1"S e. g., for a model airfoil 3 in. chord, 100 1.-i/hr.,
. - e(l. ore B
Drag, D; absolute coeflicient C’n;‘-';lj];" ‘ gg;)fgg'lo;mebwre,o 07 235,000 and at 1.0
Cross-wind force, C; absoluto cocflicient - or for o model of 10 em. chord, 40 m/scc., .
' c _c , corresponding  rumbers arc 299,000 and
LR 270,000.
Resultant force, 2 Center of pressure cocflicient (ratio of distanco
. (Note that these cocflicients aro twice as  of €. P. {from leading edge to chord length),
largo as the old cocflicients L., D..) C,.
Angle of setting of wings (relative to thrust Angle of stabilizer setting with seference to
line), 1w lower wing.  (fo—te) =3
Angle of stabilizer setting with reference to Angle of atfack, «
thrust ling 2, Angle of downwasl;, €
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REPORT No. 184.

THE AERODYNAMIC FORCES ON AIRSHIP EULLS.

By Max M. Mu~NE.

SUMMARY.

This report deseribes the new method for making computations v econncction with the
study of rigid airships, which was used in the investigation of Navy's Z7-1 by the speeial
subcommittee of the National Advisory Committee for Aeronautics appemnted for this purpose.
It presents the general theory of the air forces on aiship hulls of the type mentioned, and an
attempt has been made to develop the results from the very fundamenteals of mechanies, with-
out reference to some of the madern highly developed conceptions, which may not yet be
thoroughly known to a reader uninitiated into modern acrodynamics, and which may perhaps
for all times remain restricted to a small number of specialists. -

]. GENERAL PROPERTIES OF AZRODYNAMIC FLOWN

1

I The student of the motion of solids in air will find advantage @ first neglecting the
viscosity and compressibility of the latter. The influence of these twa properties of air are
hetter studied after the student has become thoroughly familiar with e simplificd problem.
The results are then to be corrected and modified; but in most cases thes remain substantially
valid.
Accordingly 1 begin with the discussion of the general properties of aerodynaniie flows
produced by the motion of one or more solid bodies within a perfeet faid otherwise at rest.
In order to be able.to apply the general laws of mechanics to (luid motien T suppose the air to
be divided into particles so small that the differences of velocity at diffexcnt points of one par-
This is always possible, as sudden changoes of velocity do not occur

ticle can be neglected.
dealt with at present. The tern “flow” denotes the

in actual flows nor in the kind of flows
entire distribution of velecity in cach case.

With serodynamice flows external volume forces (that 1s, forees unifermly distributed over
the volume) do not occur.  The only force of this character which could be supposed to inilu-
ence the flow is gravity., Tt is neutralized by the deerease of pressure witl inereasing altitude,
and both gravity and pressure deerease can be omitted without injuiy to the resnli. Tlis
does not refer to acrostatic forees such as the buoyanzy of an airship, bt the aerostatic forces
arc not a subject of this paper.

The only foree acling on n particle is thercfore
Adjncent particles.  As the fluid is supposed to be nonviscous,
or forces other than at right angles to the surface threugh which the tramfer takes place. ‘The
L of the equilibrium ol a <mall teteahedron shows, then, that tie only kind of tensien
of equal magnitude inall directions at the point considered.
time ¢ and of e three eoordinntes of

Consider now v very small cube with
Tlie meun

the resultant of the forses exerted by the
it ean not transfer tensions

coaxideratior
possible in u perfect fluld isa pressure

In general this pressure is steady function of the
the space, suy 7, ¥, and 2, right angles to cuch other.
the edees dr, dy, und dz. The mean pressure acling on the face oy dz nay be p.
pressure on the opposite face is then p ¢ dporde. The Y-component ol the resultant volume
force is the ditference of these two meun pressures, mulriplied by the wea of the faces dydz,

H
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. . - ) . . ,
hence. it is ——gﬂf:/,r dy dz. Per unit volume it is —gi‘ as the vdume of the cube is drx, dy. d2.

It can be shown in the <ame way that the other two components ol the foree per unit volume

oz

produced by it is generally deseribed ax the foree being the “gadient” of the pressure. or
rather the negative gradient.  Any steady dist+ibution of plc\mxchns a gradient nt each pnm(
but if a distribution of Torces (or of other veetors) is given, it is notl always possible to assign
& quantity such that the forees are its gradient.

We denote the density of air by p: that i, the mass per unit volunie, assumed to be con-
stant. dr may denote the small volume of a pacticle of air. The mass of this particle is then
pdr. The components of the velocity 17 of this particle parallel v r, y, and z may be denoted

op op . . . C e
are-- b{/ and . Such o velation ax existing between the presswee distribution and the force

N . . . P . . .
by . voand s Each particle has then the kinetie energy o7'= 5 dr 0+ 0%+ u) and the

component of momentnm, say in the A direetion, is pdru. The kinetie energy of the entire
flow is the integral of that of all particles.

——f(u’-r'l'-- w)dr . I O §

Similarly, the component of momentum in the X-direction is the miegral
pf'm‘i'r S ¢)

and two <imilar equations give the components for the two other directions.  These integrals
will Iater be transformed to make them fit for actual computation of the energy and the
momentun.

It is sometimes useful to consider very large forces, presswes, or volume forces acting
during a time element dt so that their product 1)) this time elanent becornes finite,  Such
actions are ealled “impuisive.”  Multiplied by the time element they are called impulses, or
density of impulse per unit area or unit volume s the case may e,

After these general definitions and explanations, I pln(m{ to establish the equations
which govern an aerodynumic tlow.  Due to the assumed constaw density, we have the well-
known equation of coutinuity

ou  Or Ow
o7 ay+*a"£=() -2

We turn now to the fuet that for perodynamie problems the flow ean be assumed to he
produced by the motion of bodies in ajr originally at rest.  As explained above, the only foree
per unit volume acting on each particle ix the gradient of the pressure.  Now, this gradient
can only be formed and expressed il the pressure is given as a funcion of the space coordinutes
ooyoand zo The laws of mechanies, on the ather hand, deal with ane particulur particle. wad
this does not stand <6l hut changes its space coordinates contnuallv.  Tn order to avoid
difliculties avising therefrom. it is convenicent first to consider the flow during  a very short
time interval Jf only, during which the changes of the space coonlinates of the particles con be
negleeted asall velocities are finite. The furees and pressuves, bowever, are supposed to be
impulsive, 2o that during the short interval finite changes of vdocity take place. ‘\'np;u-sv
fivst the Hhud and the bodies immersed therein to be at rest. Diring the ereation of the flow
the density of Hapulse per unit area may be P, 1. e, I’—:fpr//. The principles of mechanies
grive then
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and similarly in the two other direetions
S0
K- VAN D

~3(-4)

. ' . : L . . -
Hence the velocity thus created is the gradient nf(—ﬁ- At this state of investigadion the

e I € )

r. . . .
value of 50 not vet known.  But the important result is that the flow thus created is of the

type having a distribution of velocity which ix a gradient of some quantity, called the velocity
polential @ @ is the impulse density which would stop the flow, divided by the density .
According to ()

u__=b'1_> z'saq) leb}f’ (5)
or' oy =~ oz semesomo ot oTmTTTIT IR
from which follows
‘b=f(u(].r+vcl3/+U’Jz)._-_-- R (1)
A second differentintion of (3) gives
o Qv :
‘3—17—5}, S )
. , R _— - . . r
since both are equal to oron’ The substitution of (5) into the equation of continuity (3) gives
p P O'd N
0 4 ‘Q--—=()___.___ U - )

ortay &7

(Laplace’s equation), which is the desired equation for the potential @ The sum of any
<olutions of (R) iz 2 solution of (8 aguin, as can eusily be seen. This is equivalent to the super-
position of flow=: the =um of the potential, of the impulsive pressures, or of the veloeity com-
ponents of =everal potential lows give a potential flow agair.

A1l this vefers originally to the case only that the Now is ereated by one impulsive pressure
from rest.  But every continuous and changing pressure can be replaced by inlinitely many
small impulsive pressures, and {he resultant flow is the superposition of the flows created by
each impulsive pressure. And as the superposition of potential flows gives a potential fow
again, it is thus demonstrated that all aerodynamic flows are potential flows.

It can further be shown that for each motion of the bodies immersed in the fluid, there
exists only one potential flow.  For the ntegral (6) applied to a stream line (that is, a line
always parallel to the velocity) has always the same sign of the integrant, and henee can not
beeonte zero.  ITenee a stream Tine can not he closed. as otherwise the integral (6) would give
two different potentials for the same point, or different impulsive pressures, which is not pos-
sible.  On thie contrary, cach stream line begins and ends at the surface of one of the mmersed
bodies.  Now suppose that two potential Hows exist for one motion of the bedies. Then
reverse one of them by ehanging the sign of the potential and superpose it on the otlier. The
resulting flow is characterized by all hodies being at rest. But then no stream line can begin
al their sarface, and hence the flow has ne stream- lines at all and the two oviginal flows are
demonstrated to be identieal.

1t renains o compube the pressure at eack point of « potential flow. The acecleration
of eaeh particle is cqual to the negative gradient of the pressure, divided by the densily of
the fluid. The pressure is therefore to be expressed as a function of the space coordinates,

. . . . . du .
and so is the acceleration of u particle. i3ach component of the acecleration. say -y has to

. . Qi
he expressed by the local rate of change of the velocity component atn certuin puint 5 and
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by the velocity components and thetr Toeal devivatives themsdves. This is done by the equa-
tion
du Oonu- On ot ou )
= L T e T e - §1))
dt ot or oy oz

For during the unit of time the particle changes its coordinntes hy w2 and o, vespectively,
. . . ou v e
and therefore reaches novegion where the selocity is larger by uy roete I'hiz inerease of

velocity has to be added to the rate of change per unit tine o the veloeity at one particular

point.
The general principles of mechanies, applied to a pacticle of unit volume, give therefore
du du Ou . du . du Lop
=, WS TV wsm = (U
dH = Yor oy e Ths : , (10)

Substituting equation (7) in the lust equation, we have

on Qv ow 19p e un

)]

af 4 lla“r '!"Ua‘r t 'U)—a.r = _l’ aT_ -

[ntegrating this with rvespect to du gives

od ]
s 4 (VU =~ p e (1)
Por T2 p!
The equations {or the two other conmiponents of the aceeleration would give the sanie equation.
Henee it appears that the pressure can be divided into two pacts superposed. The first purt,
ot . ar . : . :
—Pyfets the part of the pressure building up or changing the petential flow. 1t is zero if the

flow is steady; that is, if

O D)
The second part, ’
VL (1)

g

)

i the pressure necessary to maintain and keep up the steady potential flow. Tt depends only
on the veloeity and density of the tuid. The greater the veleeity, the smaller the pressure.
It is sometimes called Bernouilli’s pressure. This pressure acts permanently without changing
the Hlow, and henee without changing its kinetie energy. It Dlows therefore that the Dor-
nouilli's pressure (14) acting on the surface of a moving bods, can not perform or consvme
any mechanieal work.  ITence in the caxe of the straight motien of a body the component of
resultant force parallel to the motion is zero.

3. Sorne impoertant formulas follow from the ereation of the dow by the mapulsive pressure
=®p. [ will assume one body only, though this is not abselutdy necessary for a part of the
results. - The distribution of this impulsive pressure over the serface of the bodies or body is
cheracterized by a resultant impulsive foree and a vesultant bepulzive moment.  As further
characteristic theve is the mechanical work performed by the mpulsive pressare during the
ereation of the flow, absorbed by the air and contained alterwards in the flow as kinetic energy
of all particles,

It happens sometines that the momentum imparted 1o the flow arouwd a body meving
translatory is parallel to the motion of the body.  Sinee this raomentum is proportional to the
velocity, the effect of the air on the motion of the body in this direction is then taken care of by
imparting (o the body an apparent additional mass. I the velority is not aceclerated, no force
is necessary to maintain the maetion. The body experiences no drag, which is plaossble, us no
dissipntion of energy is wssumed. .\ similar thing may happea with a rotuting body, where
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then the body seems to possess an apparent additional moment of momentum. In general.
however, the momentum imparted to the fluid is not parallel to themotion of thie body, but it
possesses a lateral component. The body in general possesses diffeient appavent passes with
respect to motions in dilferent divections, and that makes the mechaics of a body surrounded
by a perfeet fluid different from that of one moving In a vacuunt.

The kirelic encrgy imparted to the air is in o simple relation ts the momentum and the

. . : .
velocity of the hody.  During the generation of the flow the body s the average velocity -,

T
during the time 4¢, hence it moves through the distance ;J!. The work performed is equel
to the product of the component of resultant force of the creating messure in the dircetion of
motion, multiplied by this path, hence it is equal to hall the produc of the velocity and the
component of the impulsive force in its direction. »

' The same arguient can be used for the impulsive pressure actiny over the surface of the
body. Let dn be a Imear clement at right angles to the surface of he body drawn outward.
The velocity at right angles to the surface is then, —ddjdn and the pessure —pd acts through

dd/dn

the distance— —T-d{. The work performed all over the surface is therefore

do
T=f;4’dﬁd.s (15)

which integral is to be extendesl over the entire surface of the body corristing of all the elements
dS. The expression under he integral contains the mass of the dement of fluid displaced
by the surface clement of the body per unit of time, cach element o mass multiplied by the
vclocity potential.  The Bernouilli pressure does not perform any vork, as discussed above,
and is therefore omitted.

The apparent mass of a body moving in a particular direction dejpends on the density of the
fluid. It is more convenient therefore to consider a volume of the duid having & mass equel
to the apparent mass of the body. This volume Is

and depends only on the dimensions and form of the body.

The kinetic energy of the flow relative to a moving bedy in avinfinite fluid is of course
infinite. It is possible. however, to consider the diminution of the kinetic energy of the air
moving with constant velocify hrought about by the presence of a bedy at rest. This diminu-
tion of energy has two causes. The body displaces fluid, and hencs the entire energy of the
fuid is lessened by the kinetic energy of the displaced fluid. Furtler, the velocity of the air
in the ncighborhood of the body is diminished on the average. The forces between the body
and the (luid ure the same in both cases, whether the air or the body noves. Ilence this second
diminution of kinetic cnergy is equal to the kinetic energy of the lav produced by the moving
body in the fluid otherwise at rest.

H. THE AERODYNAMIC FORCLS ON AIRSBIP TOLLS.

4. An important branch of theoretical acrodynamics deals withmonents on bodies mov-
ing through the air while producing a potentinl flow. Wings prodice a flow different from a
potential flow, in the strict meaning of the word. The wings have therefore to be excluded
from the following discussion.

Consider first bodies moving straight and with coustant velocity V through air extending
in all directions to infinity.  There can not then Le a drag, as the kinetic eneryy of the flow
remaing constant and no dissipation of energy is supposed to take plure.  Nor can there beu

U7 I8 --24——U
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lift in conformity with the remarks just made. lenee the av pressures ean at best produce
& resultant pure couple of forees or resultant moment.  The magnitude and direction of this
moment will depend on the magnitude of the velocity 17 and e the position of the body rela-
tive to the dircetion of its motion.  With a change of velocitz all pressures measured from s
suitable standard. change proportional to the square of the vdocity, as follows from equation
(14).  Henee the resultant moment is likewise proportional to the square of the veloeity. In
addition it will depend on-the position of the body relative te the dircetion of motion.  The
study of this Latter relation is the chiel subject of this section. At each dilferent position of
the body relative to the motion the flow produced is different in general and so is the momentwn
ol the flow, possessing different components in the direction of ind at right angles to the diree-
tion of motion. By no means, however, can the relation beween the niomentum and the
direction of motion be quite arbitrarily prescribed.  The flow duc to the straight motien in
any direction ean he obtained by the superposition of three flavs produced by the motious in
three particular directions.  That restricts the possibilities corsiderably.  But that is not all,
the moments can not even arbitrarily be prescribed in thrae directions. [ shall presently
show that there are additional restrictions based on the priwiple of conservation of energy
and momentum. '
Let there be a component of the momentum lateral to the motion, equal to K17, where
p denotes the density of the air.  Sinee the body is advancing, this lateral component of the
momentum has continually to be annihilated at its momentary position and to be created anew
in ils next position, occupied a moment later. This process rquires a resultant moment

Me=E, Vo (D)

about an axis at right angles to the direetion of motion snd to tie momentum.  In other words,
the Interai component of the momentun multiplied by the velaity gives directly the resultant
moment.  Conversely, if the body expericnees no resultant monent and henee is in equilibriun,
the momentam of the air flow must be parailel to the motion

Now consider u flow relutive to the body with constant vdveity V except for the disturh-
ance ‘of the body and let us examine its (diminution of) kinetir cnergy. 11 the body changes
its position very slowly, so that the flow can still be considered +~ steady, the resultant moment
is not affected by the rotation but is the same as corresponding to the momentary position and
stationary flow.  This moment then performs or absorbs wout during the slow rotation. [t
cither tends to aceelerate the rotation, so that the body has tobe braked, or it is necessary o
exert a moment on the body in order to overcome the resultant noment.  This work performed
or absorhed makes up for the change of the kinetie enercy of the fow.  That gives a fundamenta!
relation between the energy and the resultant moment.

There are as many different positions of the body relative to its motion us a sphere has
radii. The kinetie energy of the flow is in general different {w all directions, the velocity V
s density p supposed to be constant. It has the same value however, if the motion of the
immersed solid is reversed, for then the entire flow is reversed. Therefore cach pair of direc-
tions differing by 180° has the same Kinetie energy.  This energv moreover is alwavs posilive
and finife. There must therefore be at least one pair of directiens, where it is a2 minimum and
one where it is a maxinmum. Moving parallel to cither of these drections the body is in equilih-
rium and experiences no resultant moment. This follows from the consideration that then »
small ehange in the dircction of motion doez not give rise to a corresponding chuige of the
kinetic energy s the moment does not perform any work, and heneemust he zero. The equilibrivim
1s stuble il the diminution of energy of the entive flow is o maxingam and unstable if it is a mini-
mum. [t can be proved that in addition there must be at least oue other axis of equilibrium.
This is the position “neutral " with respeet (o the stable divection and at the same time neutyal
with respect to the unstable one. T eall these directions “maisayes.”

I'proceed to demonstrate that the three niain axes of equililzium are always nt right angles
to each other. Conxides first the motion parallel to a plane thrwiugh cne of the main axes wnd
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only the components of the monentum parallel to this plane.  The diretion of motion of the
body may be indicated by the angle o in such o way that a= 0 is one madon of equilibrium, and
henee without lateral component of momentum.  The component of mvmentum in the diree-
tion of the motion may then {that is, when a=0) be Apl. ¥hen moving at the
angle of @907, the momentum may be supposed to possess the conponents A 1™ parallel
and A 17 at right angles to the motion, and we shall prove at once that the only momentun:
15 the former.
The kinetie energy for any direction « ean be written in the generalform

T=17 ; (A, cos? a+ A, sin® a+ K, cos « sin a)

and hence the resultant moment is

V=dlda=1"? f-j_[(l(z-- i) sin 2 a+ K, cos Za]. S 0 £}

This resultant moment was supposed to be zero ut a=0. Hence K,=0, and it follows that
a=00°is a position of equilibrium for motions in the plane considered. As for other motions,
it is to be noticed that the third component of the mowmentum, at rigle angles to the plane,
changes if the plane rotates around the axis of cquilibriwmn. It neceswmrily changes its sign
during a revolution, and while doing it )/ is zero.  Thus it is demonstmied that there are at
least two axes at right angles to eaeh other where all Interal componentsf the momentum are
zero, and hience the motion is in equilibrin. And as this argument holdstime for any pairof the
three axes of equilibrium, it is proved that there are always at least thwe axes of equilibrivm
at right angles to each otlier.

Resolving the velocity 17 of the body into three components, u, v, mparallel to these tliree
main axes, the kinetic energy can be expressed

g (K2 + Ko+ Ke?)

The differentinl of the energy

p (K udu+ Kedy + Kyedw)

is identically zero in more thun three pairs of pesitions only if at least two of the K's are equal.
Then it is.zero in an infinite nuniber of directions, and there are an infinie number of directions
of cquilibrium.  The body is in equilibrith in all directions of motion miy if all three A's are
cqual; thatis, il the apparent mass of the body is the same in all directims. That is a special
Cose. :

In all other cases the body experienees a resultant moment if movingwith the velocity com-
ponents .z and e parallel to the three main axes. The component of this resultant moenient
i< determined by the momentary lateral momentum and its components.as stated in equation
17.

In most practical problems the motion oceurs in o main plane; thatis, at right angles (o a
main axis. Then the entire resultant montent is according to (17) the yoduct of the velocity
and the component of momentum af right angles to it, giving

M- I"’%(Ix‘,~ KYsin2 e oo oo 18]

In general, the three main mowenta of the flow, parallel to the respetive motion, do not
pass through one center. Uractieal problems oceur chiefly with bodies of nvolution. With them
aswellaswith bodies with a center of symmetry ~that is, such as have threeplunes of symmetry-—
the relation hetween the motion and the momenta iz simple. Tt follows then from symmetry
that the bhody possesses wn acrodynamie eenter through which the three main momenta pass.
This means that the body can be put into any straight motion by apphiog a force at a fixed
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center. The foree, however, is not parallel to the motion exeept in the ninin directions. The
center where the foree has to be applicd coineides with the acodvnamie center, if the center of
gravity of the body does so or if the mass of the hody itsell ean be neglected compared with
any of the three main additional massca.

Aieship hulls are often bounded by surfuces of revolution In addition they are uwsually
rather elongated, and il the eross seetions ave not exactly round. they are at least approximately
of equal and symmetrical shape and arronged along o straigla »ais. Surfaces of revolution
hve, of course, equal transverse apparent masses: cach transwerse axis< ot right angles to Uie
axis of revolution is a main direction.  For very clongated saefaces of revolution a further
important statement may be made regarding the magnitude of the longitudinal and transverse
apparent mass.  When moving transversely the flow is approxdmately two-dimensional along
the greatest part of the length. The apparent additional mass of a circular cylinder moving at
right angles to its axis will be shown to be equal to the mass of the displaced fiuid. Tt follows
therefore that the apparent transverse additional mass of a very elongated body of revolution
is approximately equal to the mass of the displaced Quid. 1€ & slightly smaller, ns near the
-ends the fluid hns opportunity to pass the bow and stern. For cwss sections other than circular
the two main apparent masses follow in a similar way from the apparent mass of the cross
section in the (wo-dimensional flow,

The longituding] apparent additions] mass.on the other hand,issmall whencorapared with
the muss of the displaced fluid. Tt ean be neglected if the bodv is vory elongated or can ot
least be rated asx nosmall correction. This follows from the fuet Giat only near the bow and the
stern does the air have veloeities of the same order of wmagnitule as the velocity of motion.
Along the ship the veloeity not only is much smuller but its direetion is essentially opposite to
the direction of motion, for the bow is continually displucing fxid and the stern makes room
free for the reception of the same quantity of fluid.  Henee the fuid is flowing from the bow to
the stern, and as only a comparatively small volume is displiaced per unit of titne and the space
is free in all directions to distribute the flow, the average velocity will be <muadl.

It is possible to study this flow more closely and to prove analytcally thet the ratio of the
apparent mass to the displaced muss approaches zero with incrasing elongation.  This proof,
however, requires the study or knowledge of quite o number of conceptions and theorens, und
it seems hardly worth while to have the student go through all this in order to prove such a
plausible and trivial fact.

The actual magnitudes of the longitudinal and transverse masses of elongated surfaces of
revolution ean be studied by means of exact computations mude by I Lamb (reference 3),
with ellipsoids of revolutions of different rativ of elongation.  The figures of &, and k.. whera
K=k volume, obtained by him are coutained in Table T of this puper,and &, =k, is computed.
For bodies of a <hape reasonably similar to ellipsoids it can be approximately assumed tha
(k, - &) has the same value as for an ellipsoid of the same length and volume; that is. if Val/L}
las the same value.

5. The next problem of intevest is the resultant werodynamis foree if the body rotates with
constant veloeity around an axis outside of itself. That is now comparatively simple, as the
results of the lust section ean be used.  The configuration of flow bllows the hody, with econzfunt
shape. magnitude, nnd heace with constant kinetic energy.  Tle resultant acrodymunic force,
therefore. must be such as neither {o conswne nor to perform mechanieal work.,  This leads
to the conclusion that the resultant foree must pass through tle axis of-rotation.  7n genoral
it has bath a component at right angles and one parellel to the metion of the center of the bady.

I confine the investigation to a surface of revolution. Let an airship with the apparent
masses Kp and K,p and the apparent moment of inertin A7y for rotation about o teansverse
axis through its acrodynamie center move with the velocity V ofits acrodynumie center around
an axis at the distance r from its acrodynamic center and let the angle of yaw ¢ be measurad
between the axis of the ship and the tangent of the circular path at the serodynaniie conter.
The ship is then rotating with the constant angular veloeity Vi The entire motion can be
obtained by superposition of the longitudinal motion ¥ cos ¢ of the acrodynamic center, the
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tranverse veloeity Psin ¢, and the angular velocity 177 The longnadinal component of the
momentum is 1p. cos ¢. k. vol, and the tranverse component of the momentum is Ip sin ¢
k.. vol.  Desides. there ix a moment of momentum due to the rotation. This can be expressed
by introducing the apparent moment of incrtin A’p=2"Jp where ./ i the moment of inertia of
the displaced air; thus making the angular momentum

eon($)

As it does not change, it docs not give rise to any resultant acrodynamicforee or moment during
the motion under conzideration.

The momentem remains constant. (oo, but changes its direction wit: the angular velocity
Vir. ‘This requires n force passing through the center of turn and having the tranverse com-

ponent

Fy=K,pcos ¢V3r . oo it i et i e oo -2 (20)
and' the longitudinal component

F,= [p sin B ) L S ¢ §)

The tirst term is almost some kind of centrifugal force.  Some air accontpunics the ship, increas-
ing its longitudinal mass and hence its centrifugal force. It will be wmticed that with actual
airships this additional centrifugal foree is small, as k, is small.  The foree nttacking ut the
center of the turn can be replaced by the same force attacking at the wrodynamic center and
a moment nround this center of the magnitude.

Moo (= Ko S$in 26V . oo e (22)

This moment is equal in direction and magnitude to the unstable moment found during straight
motion under the same angle of pitch or yuw. The longiindinal force irin practice a negative
drag as the bow of the ship is turned toward the inside of the eirele.  Itis of no great pructical
importance as it does not produce considerable structural stresses.

It appears thus that the ship when flying in a curve or circle expetiences almost the sume
resultant moment as when flving steaight and under the same angle of pitd or yaw. I proceed to
show, however, that the transverse acrodynamie forces producing this resultant moment are .
distributed differently along the axis of the ship in the two cases.

6. The distribution of the transverse aerodynamic forces along the axis can conveniently
be computed for very elongated airships. It may be supposed that the moss section is circular,
although it is easy to generalize the proceeding for a more general shapeof the eross section.

The foilowing investigation requires the kuowledge of the apparen: additional mass of v
cireular eylinder moving in a two-dimensional flow. T proceed to skow that this apparent
additional muss i= exactly equal to the mass of the {luid displaced by the eylinder. In the
two-dimensional flow the eylinder is represented by a cirele. .

Lot the eenter of this civele coincide with the origin of a system of miar coordinates ' and
¢. moving with it, and lel the radius of the circle be denoted by r. Tlen the velocity poten-
tial of the flow created by this circle moving in the dircction ¢= 0 with the velocity v is
d=pr? (cos )R, For this potential gives the radial velocity component

dd r?

dR™ TR 008 ¢

and at the ciccamference of the cirele this velocity becomes » cos 6. Thie 1 m fact the normnl
component of velocity of a cirele moving with the velocity v in the speetfed direction.

The kinetic energy of this flow is now to he determined. In anabyy to equation (15).
this is done by integrating along the circumference of the cirele the prodiet of (@) the elements

of ialf the minss of the thiid penetrating the cirele <g co% ¢7'rfl¢> and (1), dhe value of the veloe-
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ity potentinl at that point (—wv cos ¢.-).  The integral is thercbre

pJ . cos? pviride
2J.

giving Lthe kinetie energy r’rru’g-

This shows that in fact the area of apparent mass is equal to {de aren of the eircle.

[ am now enabled to return to the airship.

[f 2 very clongated sir<hip is in translatory horizontal motbn through air otherwise at rost
and is .-.h;:lnl_\ lnt(.hul. the component of the motion of the airn the direction of the axis of the
ship ean be negleceted. The air gives way (o the passing <hip Iy flowing arcund the axis of the
<hip. not by flowing along it Hw air loeated in o vertical pl.nc at right angles to the motion
remains in that plane. <o that the motion in each pl.mc can be cm\.dcn'd to lw two-dimensional,
Consider one such approximately vertieal tayver of air at right agles to the axis while the ~ln]>
is passing horizontally through it The <hip displaces a circular portion of this layver, and this
-~ portion changes 1t position and 15 <ize. The rate of change of position is (.\])h‘\\('d by an
apparent veloeity of (his circular portion, the motion of the airib the vertieal tayer is deseribed
by the two-diznen<ional flow produced by a eircle moving with He same veloeity, The momen-
tum of this low i Sepde, where 8 s the area of the eirele, mul ¢ the vertieal velocity of the
cirele, and dr the thickness of the layver.  Consider fiest the steight light of the ship under the

angle of piteh ¢, The veloeity » of the displuced ecircular portim of the layver 1= then constant
over the whele fength of the ship and i~ 1 sin ¢, where 17 1= theselocity of the sirship atong thie
circle.  Nol so the aren N: it changes along the ship. AU a parieular layer it changes with the
rate of change per univ time,

- db’
1" cos ¢ a;

where r denotes the longitudinal coordinate.
Therefore the momentum changes wirh the rate of change

WP 1y
| ‘g sin 2¢ :7—2_(/.1'

This gives a down force on the ship with the magnitude

(I["=(1xV’% sin 2d>(;b e e 2y

Next, consider the ship when turning, the ungle of yaw being ¢. The momentim in each luyer
is agnin
vSpdx

The transverse veloeity v iz now vartable, too, ax it is compo<edof the constant portion 17 sin ¢,
. . - T . .
produced by the yaw, aud of the variable portion 1 = cos &, woduced by the turning. 7= 0

represents the acrodyuamic center. Hence the rate of chang of the momentum per unii
length is .

Wb oL dS Y d
] 5 sin _rf)‘»/;rfp—,«_— cos q‘wdrm\v

miving ri<e to the transver-e foree per unit length

. Il\.
V’% sin ‘.Zd::h; )7 % cos d>(.\ +f )
or otherwise written

/
. JI‘—«tlJ(I = am"dsng l‘r- cos¢ S+ V7 ’- 05 P- _r(‘S R 0.
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The fivst term agrees with the moament of the ship fving <trajeh having a piteh ¢, The
direction of this teansverse foreo js epposite at the two ends, and gves rise to an unstable
moment. “The ships in practice have the bow turned inward when they flv in turn. Then the
transverse force represented by the firs term of (24) 1= divected inward near the bow and out-
ward near ihe storn.

The sum of the <ccond and thivd terms of (2.0) gives no resultant foree or monicnt. The
second term alone gives a fransverse fovee, heing in riagnitude and distiibution almost cqual to
the transverse camponent of the centrifugal foree of the displaced air. hat reversed.  This latter
becomes eloar at the evlindrical portion of the ship, where the two other terms are zoro. The
front part of the evlindiical pottion moves toward the center of the turn and the rear part
moves away from it The inward momentum of the flow has to change into an outward mo-
mentum, requiring an ontward foree acting on the air, and giving ke to an inwerd foree
reacting this change of monentun.

The thivd term of 24 represents forees almost concentrated near the two ends and their
sum in magnitode and divectjon j« equal (o the transverse component of she centrifugat force of
the displiced nir. They are directed outward. .

Ships only moderately clongated have resultant forees and a distribation of them ditfering
from those given by the formulas (23} and (24). The assumption of the hyers remaining plane
is more aceurate near the middle of (he ship than near the ends, and in wnsequence the trins-
verse forees ave diminished (o o greater extent at the ends than near the cvlindrieal part when
compared with the very clongated hulls.  [In practice, however, it will «ften be exact enough
to-assunie the same shape of distribution for each term and to modify the trunsverse forces by
constant diminishing factors. These factors are logically to be chosen diferent for the different
termas of (24). For the firsi term represents the forces giving the resultand moment proportiona|
to (b~ 4y, and heaee it is reasonable (o diminish this term by multiplying it by &, -k). The
second and third teemes take care of the momenta of the air lowing trasverse with a veloelty
proportional to the distance from the acrodyvnamic center. The mowen( of Inertin of the
momenta really comes in, and thercfore it scems reasonable o diminish these terins by the
factor &7, the ratio of the tpparent moment ol inertia to the moment of inegin of the displaced yir.

The transverse component of (e centrifagal foree produced by the ain taken along with the -

ship due to its longitudinal mass is negleeted. 1t magnitude is small: e distribution is dis-
cussed n reference (37 and may be omitted in this troalise.

The entire transverse foree on an airship, turning under an angle of zaw with the velocity
Voand a radius r, s, according to the preceding discussion,

,
dF =y [(A~, - L)Z: Vi3 sin 2+ 4 VIS cos ¢+ k7 pit 'Z,; car ¢]._ e (25)
This expression does not contain of course the air forces on the fins.

7. In the first two parts of this paper T discussed the dynaniical fores of bodies moving
along a straight or eurved path in a peefeet fluid. In particular I considera! the case of o very
elongated body and as o speetal case again one bounded by a surface of resolution.

The hulls of modern rigid airships ure mostly surfaces of revolution md rather elongated
ones, too. The ratio of the lensth to the greatest dinmeter varies from & to 10, WWith this
elongution. particularly if gveater than S, the relations valid for infinite elongation require
only a small correction, only a few per cont, which can be estimated from o case of ellipsoids
for which the forees nre known for Ay elongation. Tt is true that the tunsverse forces are
not only mcreased or decreased uniformly. but alxo the character of their diiribution is slightly
changed.  But this can be neglected for most practien applications, ané espeeially so sinee
there ave other differences between theoretical and actual phenomena.

Scrious differences are implied by the assumption that the air is a peret tuid. It is not,
and as & cousequence the aip forees do not agree with those iu a perfect dhid.  The resufting
air force by no means gives vise {o 1 resulting moment only; it is well kmwn that an airship
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hull model without fins experiences both a drag and a Ift, if iclined.  The diseussion of the
drag is beyond the scope of this paper.  The lift is very smiil, less than 1 per eent of the
lift of a wing with the same surface avea.  But the resulting noment is comparatively small,
too, and therefore 1t happens that the rezulting moment about the center of volume is only
about 70 per cont of that expected in a perfeet fluid. It appuars, however, that the actus]
resulting moment is at least of the same range of magnitude,and the contemplation of the
perfect fluid gives therefore an explanation of the phenonuner. The difference can bo
explained.  The flow is not perfectly irvotational, for there awe free vortices near the hall,
especially at its rear end, where the air leaves the huil.  They cive a lift acting at the reor
end of the hull, and hence deereasing the unstable moment withaspeet to the center of volume
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What js perhaps more important, they produce a kind of inducel downwash, diminishing the
elfective angle of attack, and henee the unstable moment.

This refers to airship hulls without (s, which are of no pratieal interest. \ir<hin huils
with fins must be considered in a different way. The fins are nkind of wings: ang the flow
nround them, if they are incuned, is far from heing even approsmately irrotational and their
lift is not zero. The circulation of the inclined fins is not zero: ard as they are arranged in the
rear of the ship, the vertical flow induced by the fins in front of than avound the hall i direeted
upward if the ship i3 nosed up. Therefore the eflective angle af attack is inereased, and the
influence of the Hift of the hull itself is counteracted. For this rason it is to he expectod that
the transverse forces of hulls with fins in air agree hetter with tlese in a porfeet flutd. Sorao
model tests to be discussed now confirm this,
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These tests give the lift and the momeut with respect to the eenter of volume at different
angles of attack and with two different sizes of fins.  If one compula the difference between
the observed moment and the expeeted moment of the hull alone, anl divides the difference
by the observed lift, the apparent center of pressure of the lift of the fus results. I the center
of pressure is situated near the middle of the fins; and i is, it can beinferred that the actual
flow of the air avound the hinllis not very diflerent from the flow of a perfect {lmid. Tt foilows,
then, that the distribution of the transverse forces in a perfect fluid give » good approximation
of the actual distribution, and not only for the ease of straight flicht inder consideration, but
also if the ship moves along a circular path.

The model tests which I proceed to use were made by Georg Fulemann in the old Goet-
tingen wind tunnel and published in the Zeitsehrift fir Flugtechinik md Motorluftschiffuhet,
1910.  The model, represented in Figure 3, had a length of [,145 nillineters, a maximum
dinmeter of 188 millimeters, and a volume of 0.0182 cubic meter. Two sets of fins were
attuched to the hall, one after another; the smaller fins were rectangulag 6.5 by 13 centimeters,
and the larger ones, 8 by 15 centimeters.  (Volume)?”? = 0.060 square npler.  In Figure 3 both
fing are shown.  The diagram in Figure 2 gives both the observed lift anlithe moment expressed
by means of absolute cocllicients.  They are reduced to the unit of -hie dynamical pressure,
and also the moment is reduced to the unit of the volumae, and the Lift tothe umt of (volume) 2/,

| ]

i Fins of mode/,

g° a° 4° 6° 8° upe 12° 14° /16° 18°
Angle ofatfock

Fra. . —Airship raodel. Fia, 4.—Cantler of prastre of fin forces.

Diagram Figure 4 shows the position of the center of pressure computed as described
before.  The two horizontal lines represent the leading and the trailng end of the fins. It
appears that for both sizes of the fins tho curves nearly agree, particdurly for greater angles
of attack at which the tests are more accurate. The center of pressire is situnted at about
40 per cent of the chord of the fins. T conclude from this that the tleory of a perfect fluid
gives a good indication of the actual distribution of the transverse brees. In view of the
small scale of the madel, the agreement may be even better with actudlairships.

IIT. SOME PRACTICAL CONCLUSIONS.

8. The last examination seems to indicate that the actual unstalle moment of the hull
in air agrees nearly witho that in a perfeet fluid. Now the actual amrshipswith fins are statically
unstable (as the word is generally understood, not aerostatically of couwse), but not much so,
and for the present general diseussion it can be assumed that the unstile moment of the hull
is nearly neutralized by the transverse foree of the fins. 1 have shovn that this unstable

moment is M- {(volume) th, - &) 1"{; sin 2¢, where (k,-- k) denotes tle factor of correction
due to fintte clongation.  Tts magnitude is discussed in the first part of ‘hisx paper. ilence the
transverse foree of the fins must be about ;],—I where a denotes the distane between the fin and
the center of gravity of the ship. Then the effective uren of the fins—tint is. the area of a wing
giving the sume 1ift in 0 two-dimensional flow--follows:

(Volume) (k ~ k).

awr
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Tuking into account the span b of the fins--that is, the distuve of two utmost points of @ pair

of {ins—the effective fin area § must be .
N
(Volume) (k, - %,) 142 b3

n T
This area S, however, is greater than the wetunl fin area. Its emet size is uncertain, but a fur
better approximation than the fin area is obtained by taking the projection of the fins and the
part of the hull between them. This is particularly true if the diameter of the huil between
the fins is small.

If the ends of two uirships are similar, it follows that the Tn area must Le proportionsl
to (= k) (volume) ‘e, For rather clongated airships (ky-- k) is almost equal to 1 and con-
stant, and for such ships therefore it follows that the fin area must e proportivnal to (volume),a,
or, less exactly, to the greatest cross seetion, rather than to (volune)®.  Comparatively short
ships, however, have a factor (k;—k,) rather variable, and with then the fin area is more nearly
proportional to (volume)™.

This refers to circulur section airships.  Hulls with ellipticd' section require greater fins
parallel to the greater plan view. If the greater axis of the cllipsis horizontal, such ships are
snbjected to the same bending moments for cqual lift and size but the seetion modulus i
smaller. and henee the stresses ure inereased.  They require, howerer, a smaller ungle of attack
for the same lift.  The reverse holds true for elliptical sections widi the greater axes vertieal.

9. If the airship flies along a circular path, the centrilugal fore must be neutralized by the
_transverse force of the fin, for only the fin gives o considerable resultant transverse force. At

“the same time the (in is supposed nearly to neutralize the unstaile moment. 1 have shown
* now that the angular velocity, though indeed producing a considerdile change of the distribution

of the transverse forees, nnd hence of the bending momnents, does not give rise to @ resulting
force or moment.  Llence, the ship flying along the eircular path nust be inclined by the same
angle of yaw as if the transverse foree is produced during a rectilicar flight by pitching. Frora
the oquation of the trunsverse force

Vol(k, = k,) 1% sin 26

- 73
Vol p ’; = oo '7"" — = =
it follows that the angle is approximately
a 1 :
CTE=k, :

This expression in turn ean be used for the determination of the distribution of the transverse
forces due to the inelination. The resultunt transverse foree is produeed by the inclination
of the fins. The rotation of the rudder has chiefly the purpose of neutralizing the damping
moment of the fins themselves,
From the last relation, substituted in equation (25), follows pproximately the di=tibution
of the transverse forces due to the inclination of piteh, consistiyg of
d‘_S,' *2 p_‘_Z(l»
dr’ 2
This is only one part of the transverse foress. The other part i due to the angular velocity;
it is approximately

dr e w

2:(;{:—1"’ gd.l‘ + & I;pSclf e 27
The first term in (27) together with (26) gives a part of the hmding moment. The =ceond
term in (27). having minly a direction opposite to the first vneand to the centrifugal {oree,
is almost neutralized by the centrifugal forces of the ship and gives additional bending momeaents
not very considerable cither. Tt appears, then, that the ship experimees <tnuller bending tonents
when creating an air force by vaw opposite to the centrifugal forw than when eveating the sue

kl
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transverse {oree during o straight flight by piteh. For ships with elliptical sections this can not
be said o generally.  The second term in (27) will then less perfectly neutralize the centrifugal
force, if that can be said at ull, and the bending moments become greater in most cases.

10. Mozt airship pilots are of the opinion that severe acrodynamie Jorees-act on auirships
flying in bumpy weather. Anexact computation of the magnitude of these forces is not possible,
as thoy depend on the strength and shape of the gusts and as probably no two exactly equal
gusts oceur. Nevertheless, it is worth while to refleet on this phenomenonand to get acquainted
with the underlying general mechanieal principles.  To will be possible o determine how the
magnitude of the velocity of flight inflluences the air forces due to gusts. It even beconies
possible to estimate the magnitude of the aiv forces to be expected, though this estimation will
necessarily he somewhat vague, due to ignorance of the gusts.

The airship is supposed to ﬂ\ not through still air but through an z\txxx<n~pl\cre the different
portions of which have velocities relative to oach other. “Thix is the cause of the air forces in
bumpy weather, the airship coming in contact with portions of air having different velocities.
Hence, the configuration of the wir flow around each portion of the airdiip is changing as jt
always ha~ to conform to the changing relative velocity between the portien of the airship and
the surrounding air. A change of the air forees produced is the consequence.

LEven an airship at rest experiences aerodynamical forees in bumpy weasher, as the air moves
toward it.  Thixis very pronounced near the ground, where the shape of the surrounding
objects gives rise to violent local maotions of the air.  The pilots have the impression that at
greater altitndes an aivship at rest does not experience noticeable air forces in bumpy weather.
This is plausible. The hull i+ strack by portions of air with relatively smudi velocity, and as the
forces vary as the square of the veloeity they can not hecome large.

It will readily be seen that the moving airship can not experience eonsiderable uir forces
if the disturbing air veloeity is in the direetion of (light.  Only a compantively small portion
of the air can move,with a horizontal velocity relative to the surronnding air sud this velocity
can only be snwall. The effeet ean enly be unair foree parallel to the axis of the ship whichis
not likely to ereate farge structural stresses.

There remains, then, as the main problem the airship in motion coming in contact with air
moving iu a transverse direction velative to the air surrounding it a moment before.  The
stresses produced are zeverer if a larger portion of air moves with that reative velocity. It is
therefure logical o consider portions of air large compared with the dismeter of the airship:
smaller gusts produce smaller air forees. 1t is now essential 1o realize that their effect is exauc Lh
the same as i the sugle of attnek of w portion of the airship is changed. The air foree acting
on each portion of the airship depends on the relative veloeity hetween this portion and the
surrounding air. .\ relative transverse veloeity v means an effeetive angle of attaek of that
portion equal ta V) where Tdenotes the velocity of flight. The airship therefore is now o
be considered us having n vaviable effective angle of attack along its axis The magnitude of
the superposed angle of attwek i< U where w generally is vartable, The air foree produced at
each portion of the airship is the sume s the air force at that portion if the entire airship woukl
have that particular angle of attack.

The magnitude of the air foree depends on the conieity of the airship portion as deseribed in
<ection 2. The force is proportional to the angle of attack and to the scjuare of the velocity of
flight. In this ease. however, the superposed puart of the angle of attack varies inversely as the
velocity of lighte Tt results, then, that the air Torees ereated by gusts are divectly proportional
to the velocity of flighte Indecd, as I have shown, they are proportional Lo the product of the
veloeity of Hight wnd the transverse veloeity relative to the surrounding wr.

A special and simple case to consider for a closer investigation is the problem of un airship
mmersing from air at rest into air with constant transverse horizontal ar vertical veloeity.
The portion of the ~hip already immersed has an angle of attack inereased by the constant
amount #/ 1 Either it can be assumed that by operation of the controls the ‘lllhhip keeps s
conrse ot, better, the motion of an airship with fixed controls and the air forces aeting on it
under-these conditions can be investigated.  As the fins come under the influence of the increased
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the airship is, as it vere, unstable during the time

{ransvorse velocity later than the other parts,
foeity and the maion of the airship aggravates

of immersing into the air of greater transverse ve
the stresses.

In spite of this the actual stresses wil
flies under an angle of pitch of the magnitude v/V,
areater transverse velocity will not he so sudden and comple
graph. [t is necessary chielly to investigate the ease of a verticaltransverse relative velocity v,
for the severest condition for the airship is 2 considerable angie ofpirch, and a vertical veloeity
Hence it would be extremely impotant to know the maximum
The velocity in question is not th areatest vertical velocity of
ne, but differences of this velmity within diztances smeller
than the length of the airship. It is very difficult to make a sitive statement as to this
velocity, but it is necessary to conceive an idea of its mazgitude,subject to 8 corrcetion after
the question is studied more closely. Studying the meteorologicd papers in the reports of the
British Advisory Committee for Acronauties, chiefly those of 101910 and 1912-13, [ should
venture to consider a sudden change of the vertical veloeity by 2 n./see. (6.5 ft./sec.) as coming
near to what to expeet in very bumpy weather. The maximumdynaniic lift of an airship is
produced at low velocity, and is the same as if produced at high velocity at o comparatively
low angle of attack, not more than 3°. If the highest velocity ‘s 30 m./scc. (67 mi./hr.), the

- : . 573 X 2 T .
angle of attack /1, repentedly mentioned before, would be '”_?O-» =3.8° This is & little
=)

Tt canonly be said that the stresses
¢s che to pitch, but they are prob-

I be of the same rangeaf magnitude as if the airship
for in generd the change from staaller to
te s supposed in the lest pria-

@ increases these stresses.
value of this vertical velocity.
portions of the atmosphere OCeUTTIT

smaller than 5°, but the assumption for i is rather vague.
due to gusts are of the same range of magnitude as the stress
ably not larger.

A method for keeping the stresses down in bumpy weather® by slowing down the speed
This is a practice common ameng experienced Aiship pilots. This procedure

of the airship.
loping large dymaic lift, positive or negative,

is particularly recommended if the airship is deve
as then the stresses are already large.
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Positive directions of axes and angles (forces and moments) are shown 'ty arrows.

Axis. Moment about, axis. l " Angle. § Velocities,
(I‘ortﬁ : l !
paraLe s Jirear
) am) . . Positive .
N Sym- Designa- |Sym-| 9 Desi - {8ym- | feompo-
eignation. || apiiat, | iz [gme Mire!® | Py i - oo | Angune
' : axis).
jeagitudinal... | X X rolling..... L | Y—>Z Iroli..... l P u P
Jateral.........0 Y Y pltdnnv M 1 Z——X j pitch....t O v q
Nonual......._..i Z 7 FAWIOG.. ... ‘ N ‘IX--—N’ yaw i p w r
Absolute enceflicients of moment Anrrlo of set of ~ontrol surface (rcmbxvo to
I M N neutral position), & (Indicate surfaco by
Co=gis O==ges “7gs5 proper subscript.)
- 4, PROPELLER SYMBOLS,
Dinmeter, D Thrust, T
Pitch (2) Acrodynamic pitch, pa Torque, @
(b) Iflective pitch, po Power, P

(c) Mean geometric pitch, pg

(d) Virtual piteh,

P+

{e) Standard pitch, p,

Piteh ratio, p/D
Tufiow welocity, 77
Stpstrenm velocitly, Vi,

1 1P =76.01 kg, m/sce. =550 Ib. fi/sec.

1 kg, m/sce.=0.01315 IP
I mi/hr, =0.44704 m/scc.
I 1m/see. =2.23693 mi/hr,

v

(It “cocflicients” are ntroduced all units
uscd nuist be consistod.)
Efficiency 9=1T V/P
Revolutions per soc., 7o) par min., N

Eftective helix angle 4= L’ ( - )
Dwrn

5. NUMERICAL RELATIONS.

11b. =0.45359 .

1 kg, =2.20462 1b.

1 mi.=1609.75 m.=52%¢ {L.
1 m. =38.28083 it. -



